Photoemission and Inverse Photoemission Spectra of Doped Mott Insulators with Orbital Degeneracy 1

Adolfo Avella¹, Andrzej M. Oleś², Peter Horsch³

- ¹ Dipartimento di Fisica "E.R. Caianiello", and CNR-SPIN, UoS di Salerno, and Unita CNISM di Salerno, Universitá degli Studi di Salerno, Fisciano (SA), Italy
- ² Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

³ Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, Stuttgart, Germany

Submitted : 22-07-2017

Keywords : spin-orbital order, charge defect, spectral function

We analyze electron localization induced by random charged defects in the vanadium $R_{1-x}Ca_xVO_3$ perovskites (R=La,,Y). Using the inverse participation number we explore the degree of localization and the doping dependence for all electron states in the spectrum. Random charged defects yield a robust insulating state in the spin-orbital ordered system. The soft gap in the defect states inside the Mott-Hubbard gap is triggered by a combination of *e-e* interactions and a kinetic mechanism [1]. We show that doped holes bound near the charge defects delocalize over active bonds, controlled by the spin-orbital structure, which in turn determine the reduction of spin- and orbital order. We discuss the novel structures arising in photoemission and the inverse participation number of different states.

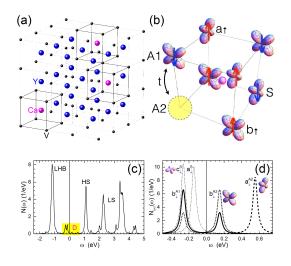


Figure 1: Random Ca defects (pink circles) in $Y_{1-x}Ca_xVO_3$ lattice (a) generate one hole (yellow circle) at each cube around the defect, confined to an active $\langle A1, A2 \rangle$ bond (b). Occupied t_{2g} orbitals $\{yz, zx\}$ alternate in *G*-type order, coexisting with *C*-type antiferromagnetic order of S = 1 spins. (c) Within the Mott-Hubbard gap the defect states D separate lower Hubbard band (LHB) and the high-spin/low-spin (HS/LS) states of the upper Hubbard band, forming a smaller kinetic gap (d). The figure is reproduced from [2].

- [1] A. Avella, P. Horsch, and A. M. Oleś, Phys. Rev. B 87, 045132 (2013).
- [2] A. Avella, A. M. Oleś, and P. Horsch, Phys. Rev. Lett. 115, 206403 (2015).

¹Supported by Narodowe Centrum Nauki (NCN, Poland) under Project No. 2016/23/B/ST3/00839.