Quantized Magnetoelectric Response of a Topological Insulator

N. Peter Armitage
The Institute of Quantum Matter
Dept. of Physics and Astronomy
The Johns Hopkins University
The Quantum Hall effect showed states can be different, despite same symmetry:

- Different plateaus are different states with the **same** symmetry,
- Quantization exact to $1/10^9$ → Cannot be same state
- Wavefunctions have different topology - net curvature of wavefunction in BZ.
- 1st discovered topological insulator

\[\rho_{xy} = \frac{1}{n} \frac{h}{e^2} \]
States exist where role of B field is played by spin-orbit coupling

broken time-reversal symmetry

\[H_{SOC} = \frac{\hbar}{4m^2c^2} (\nabla V \times \vec{p}) \vec{\sigma} \]
Conventional Insulator: Adiabatically connected to the vacuum
Topological Insulator: Adiabatically disconnected from the vacuum

Gap closes between two different vacua; Topologically protected surface metals

Driven by spin-orbit coupling --> heavy atom compounds

\[H_{SOC} = \frac{\hbar}{4m^2c^2} (\nabla V \times \mathbf{p}) \sigma \]
Proposed “Flipper Bridge” between Hong Kong (left-hand traffic) and mainland China (right-hand traffic). Design by nl architects (www.nlarchitects.nl). Concept by Phillip Hoffman, Aarhus University
Small angle scattering does not usually affect transport lifetime. Backscattering dominates.

\[\frac{1}{\tau_{\text{trans}}} = \frac{1}{\tau_{\text{qp}}} \frac{1}{2\pi} \int d\theta \left(\frac{1 - \cos \theta}{2} \right) \]

\[\frac{1}{\tau_{\text{trans}}^{TSS}} = \frac{1}{\tau_{\text{qp}}} \frac{1}{2\pi} \int d\theta \left(\frac{1 - \cos \theta}{2} \right) \left(\frac{1 + \cos \theta}{2} \right) \]

In TI SS 180° backscattering suppressed → “spin”-momentum locking

Differences of order unity in classical transport regime → small but significant

Bigger differences expected for high disorders where quantum interference is significant
Quantized Magnetoelectric effect in TI

Thickness independent (surface state) transport in Bi$_2$Se$_3$ topological insulator film

Distinct top and bottom surface states that we can see through TI/nTI phase transition in In-doped Bi$_2$Se$_3$ investigated with THz

→ Band gap closure and change in topological class
 Lifetime collapse in surface state transport

Quantized Faraday and Kerr rotation. Axion electrodynamics

Valdes Aguilar et al., PRL 2012
Wu et al. Nature Physics 2014
Wu et al. PRL 2015
Wu et al. Science 2016
Cheng et al. PRB 2016
Time Domain THz Spectroscopy

- fs laser excites photoconductive emitter and receiver. Coherent detection of field allows **complex** optical response functions to be measured.

\[
T(\omega) = \frac{4n}{n + 1} e^{i\Phi_s} \frac{1}{n + 1 + \sigma(\omega)dZ_0}
\]

- 100 GHz - 3 THz (0.8 meV - 12 meV), @ 1.4K - 300K.
THz Conductance Measurements: Data and Fits

Conductance is a complex quantity

$$E_\sigma = J$$

$$T(\omega) = \frac{4n}{n+1} \frac{e^{i\Phi_s}}{n+1 + \sigma(\omega)dZ_0}$$

MBE grown films

Surface conduction dominates for less than 150 unit cells (QL)
Thickness independent transport @ Low Energy

Important quantities are areas and widths of peaks -- We fit them

\[8 \int_0^W \sigma_1(\omega) d\omega = \frac{4\pi n e^2}{m_b} \]

Conductivity Sum Rule

Scattering rate of Drude piece dependent on thickness, but “area” is preserved.

Area of phonon component depends linearly on thickness
Topological Transition in Bi$_{2-2x}$In$_{2x}$Se$_3$
Topological Transition in Bi$_{2-2x}$In$_{2x}$Se$_3$

The only way to change topological class is to close band gap. In$_2$Se$_3$ is a band insulator with same structure.

6% doping band gap closure and topological transition
Topological Transition in $\text{Bi}_{2-2x}\text{In}_{2x}\text{Se}_3$

Enhanced scattering “near” the TI/nTI transition

But wait! ... there is a mismatch between $x \sim 0.05$ where jump in $1/\tau$ is seen and $x \sim 0.06$ where band gap closes
Scattering rates through the TI/non-TI “phase transition”

The low energy excitations near the transition ARE the boundary states!
Surface State Hybridization in Transport

A simple ansatz gives penetration of surface state $\xi \sim 2.7$ QL is close to that extracted with ARPES.
Finite size scaling analysis

Finite size analysis gives dependence of critical length
How to kill a Topological Insulator - “Phase” Diagram
The topological magnetoelectric effect
Magnetoelectric response of a topological insulator

TI with magnetically gapped surface and QH effect. Preserve inversion “deep inside”

\[K_x = G_{xy} E_y = \frac{e^2}{\hbar} (n + \frac{1}{2}) E_y \]

\[\mathbf{K} = \mathbf{M} \times \hat{n} \rightarrow M_y = \frac{e^2}{\hbar} (n + \frac{1}{2}) E_y \]

Surface current is equivalent to bulk magnetization; Bulk magnetoelectric polarizability

the 1/2 is set by the bulk topological properties

\[\Delta \mathcal{L}_{EM} = \frac{\theta e^2}{2\pi \hbar} \mathbf{E} \cdot \mathbf{B} = \frac{\theta e^2}{16\pi \hbar} \epsilon^{\alpha \beta \gamma \delta} F_{\alpha \beta} F_{\gamma \delta}. \]

Can be described by axion modification to EM Lagrangian

Exotic magnetoelectric effects (quantized axion EM response, induced monopoles)
Qi, et al. '08; Essin, et al.'09; Tse et al. '10,'11; Maciejko '10
“Axion Electrodynamics”

Axions had been postulated in 1977 in an attempt to explain the absence of charge-parity (CP) violation in the strong interaction between quarks. Wilczek called them the axion because they “cleaned up” a problem with CP violation.

“I called this particle the axion, after the laundry detergent, because that was a nice catchy name that sounded like a particle and because this particular particle solved a problem involving axial currents.” - F. Wilczek

In 1987 Wilczek pointed out that existence of axions modifies Maxwell equations.

\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} - 2c \alpha \nabla \left(\frac{\theta}{2\pi} \right) \cdot \mathbf{B}. \]

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \frac{2\alpha}{c} \left[\mathbf{B} \frac{\partial}{\partial t} \left(\frac{\theta}{2\pi} \right) + \nabla \left(\frac{\theta}{2\pi} \right) \times \mathbf{E} \right] \]

\[\theta = 2\pi (N + 1/2) \] can only be defined as a bulk quantity modulo \(2\pi\) (like ferroelectric polarization \(\mathbf{P}\))

3D magnetoelectric effect will manifest as quantized Faraday and Kerr rotations

Scale set by fine structure constant \(\alpha = e^2/2\hbar\varepsilon_0c \sim 0.418^\circ\)
Problem with textbook definition of polarization

As a bulk quantity only changes in polarization are well defined → Modern theory of polarization

Macroscopic dipole has ambiguity that originates either from definition of local dipole or surface charge → In fact these are same thing.

\[\mathbf{d} = V \cdot \left(\mathbf{P} + \frac{e}{\Omega} \mathbf{R} \right) \]
Ambiguity in local measures of polarization

As a bulk quantity only changes in polarization are well defined → Modern theory of polarization

Macroscopic dipole has ambiguity that originates either from definition of local dipole or surface charge → In fact these are same thing.
With this definition even inversion symmetric structures can have polarization (changes) defined, but the polarization must be quantized.

But in this scheme we can define two inversion symmetric structures, which have half quantized polarization difference \rightarrow analogy to a TI.

$\frac{1}{2} e$ charge trapped at interfaces, which but arising from bulk property.
Only changes in θ are physically accessible

Topological insulator in magnetic field

Topological insulator with outward directed magnetic layer

Topological insulator with quantum Hall layers on surface

Topological insulator with opposite directed quantum Hall layers on surface
THz Faraday (polarization) rotation

- Allows phase sensitive detection of E_x and E_y; Very accurate 0.01 degree sensitivity
- Frequency and field dependence gives lots of information
- Mobility, mass, and density of multiple channels can be resolved separately by cyclotron resonance

In- and out-of-phase components lockin @ 2ω are proportional to E_x and E_y
\[
\tan(\phi_F) = \frac{2\alpha}{1 + n} \left(N_t + \frac{1}{2} + N_b + \frac{1}{2} \right), \quad \leftarrow \text{Quantization condition}
\]
A quantum regime of quantized Faraday rotation

\[\tan(\phi_F) = \frac{2\alpha}{1 + n} (N_t + \frac{1}{2} + N_b + \frac{1}{2}) , \]
A quantum regime of quantized Faraday rotation

With **spectral weight** and cyclotron mass, we measure filling factors directly ($\nu=n/B$)

$$\tan(\phi_F) = \frac{2\alpha}{1+n} \left(N_t + \frac{1}{2} + N_b + \frac{1}{2} \right),$$

Quantization index shows offset. With two surfaces each surface has minimum $\sigma_{xy}=e^2/2h$.

Consistent with topological magnetoelectric effect

Must be a bulk effect as gapped 2D material must have $\sigma_{xy}=ne^2/h$.
Is this just the normal integer quantum Hall effect?
NO!
$J_x = \sigma_{xy} E_y = \frac{e^2}{h} \left(n + \frac{1}{2} \right) E_y$

n depends on filling factor (Field, chemical potential), but the $1/2$ is a property derived from bulk.
Edges states each may contribute $1/2$ QH effect.

Non chiral Dirac metal side surfaces; will short out Hall voltage, except at high field where they may localize.

\[J_x = \sigma_{xy} E_y = \frac{e^2}{h} (n + \frac{1}{2}) E_y \]
DC Quantum Hall effect only at high fields
In TDTS, E field is measured in time. Multiple reflections in substrate can be time-separated.

This is unique to TDTS, traditional spectroscopies measure in frequency directly.

\[\tan(\phi_F) = \frac{2\alpha}{1 + n} \left(N_t + \frac{1}{2} + N_b + \frac{1}{2}\right) \]

\[\tan(\phi_K) = \frac{4n\alpha}{n^2 - 1} \left(N_t + \frac{1}{2} + N_b + \frac{1}{2}\right) \]

\[\text{arcTan}(\alpha) \approx 0.418^\circ \]

Axion regime: well-defined surface Hall effect

\(\alpha \) is fine structure constant. \(N \) is LL index. \(n \) is substrate index of refraction.
A solid state measure of α

\[
\alpha_{\text{measured}} = \frac{1}{N_t + N_b + 1/2 + 1/2} \frac{\tan(\phi_F)^2 - \tan(\phi_F)\tan(\phi_K)}{\tan(\phi_K) - 2\tan(\phi_F)}
\]

(average over 3 samples and 0.25 – 0.7 THz)

accepted: $\alpha^{-1} \sim 137.04$

measured: $\alpha^{-1} \sim 137.9$
Quantized Magnetoelectric effect in TI

Thickness independent (surface state) transport in Bi₂Se₃ topological insulator film

Two surface states that we can see through Topological Non-topological phase transition in In-doped Bi₂Se₃ investigated with THz

→ Band gap closure and change in topological class

Lifetime collapse in surface state transport

Quantized magnetoelectric effects. Axion electrodynamics

Valdes Aguilar et al., PRL 2012
Wu et al. Nature Physics 2014
Wu et al. PRL 2015
Wu et al. Science 2016