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U 
Ru 
Si

Large Order Parameter Expected

The Mystery of  URu2Si2

Yet....


Order parameter undetected  
after more

than 25 years of research. 

=0.14 x 17.5 K  

=2.45 J/mol/K

=0.42 R ln 2

“Textbook” Ordering Transition at T = 17.5 K

     Precursor to Superconductivity at T = 1.2 K
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U 
Ru 
Si

The Mystery of  URu2Si2

=0.14 x 17.5 K  

=2.45 J/mol/K

=0.42 R ln 2

What is the nature of the quasiparticle excitations


and 


the Broken Symmetries


associated with this


Hidden Order Phase   ??
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Hidden Order:   State of Matter where the Correlations Cannot be Identified

New Forms of Order 
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Hidden Order:   State of Matter where the Correlations Cannot be Identified

Competing/Intertwined Order 
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Forms of Order Beyond the Landau Classification  ??

Topological Order  



8

Forms of Order Beyond the Landau Classification  ??

New Types of Symmetry-Breaking Order Parameters  ??  

Can order parameters, like excitations,

fractionalize  ??  

PC, P. Coleman, R. Flint (2013).
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U 
Ru 
Si

Large entropy of condensation.

�

The Mystery of  URu2Si2

What is the nature of the 
hidden order?

=0.14 x 17.5 K  

=2.45 J/mol/K

=0.42 R ln 2

Broken Symmetry:  ??

Order Parameter :  ??
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High pressures, high fields
Butch et al (2011)



25 Years of Theoretical Proposals

Itinerant Ramirez et al, ’92 (Quadrupolar SDW)

Ikeda and Ohashi ’98 (d-density wave)

Okuno and Miyake ’98 (composite)

Tripathi, Coleman, Mydosh and PC, ’02 (orbital afm)

Dori and Maki, ’03 (Unconventional SDW)

Mineev and Zhitomirsky, ’04 (SDW)

Varma and Zhu, ’05 (Spin-nematic)

Ezgar et al ’06 (Dynamic symmetry breaking)

Fujimoto, ‘11 (Spin-nematic)

Ikeda et al ‘12 (Rank 5 nematic)

Tanmoy Das ‘12 (Topological Spin-nematic)


Local
Santini & Amoretti, ’94, Santini  (’98) (Quadrupole order)

Barzykin & Gorkov, ’93 (three-spin correlation)

Amitsuka & Sakihabara  (Γ5, Quadrupolar doublet, ‘94)

Kasuya, ’97 (U dimerization)

Kiss and Fazekas ’04, (Rank 3 octupolar order)

Haule and Kotliar ’09 (Rank 4 hexa-decapolar)

Rau and Kee ‘12   (Rank 5 pseudo-spin vector)


Landau Theory Shah et al.  (’00)  “Hidden Order”

What is the nature of the 
hidden order?

Kondo Lattice
Pepin et al ’10  (Spin liquid/Kondo Lattice)

Dubi and Balatsky, ’10 (Hybridization density wave)
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Importance of Ising Anisotropy to HO Problem 
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U moments are Ising  h+|J±|�i = 0

Integer S   (      )5f2



Importance of Ising Anisotropy to HO Problem 
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Ramirez et al ’92

Non-spinflip             magnetic excitations 
also have Ising character !! 


Inelastic Neutrons (Broholm et al, 91)

Raman (Buhot et al, Kung et al., 15)

(�Jz = 0)

Absence of Local

Moments !!

What about the 

quasiparticle excitations ??
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Quasiparticle  with giant Ising anisotropy > 30. 

Pauli susceptibility anisotropy > 900 

hk�|J±|k�0i = 0

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
a

cos ✓, 0, g2
c

sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-

states], setting M · Ĥ = ⇢
µBg

⇤
eff

2

H defines an e↵ective
g-factor

g⇤
e↵

=
q
g2
c

sin2 ✓ + g2
a

cos2 ✓ (3)

that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-

 Altarawneh et al., PRL 108, 066407 (2012)

Superconductivity:  Giant Ising Anisotropy

Ising  5f doublet degenerate to within  
2� ⇠ 5K
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A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu
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. The finding of a large
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⇠ 140) in the di-

 Altarawneh et al., PRL 108, 066407 (2012)

Ising QP’s pair condense.
Palstra et al, 

PRL, 85

Superconductivity:  Giant Ising Anisotropy

Ising  5f doublet degenerate to within  
2� ⇠ 5K



  
Quasiparticle  with giant Ising anisotropy > 30. 

Pauli susceptibility anisotropy > 900 

hk�|J±|k�0i = 0

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin
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∴ Integer spin M

Symmetry Implications of giant Ising anisotropy

kEf

E(k)

unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

4

|↵i ⌘ |±i

Mott, ‘73

~k� ~k�↵V V h+|J±|�i = 0
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While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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provided by recent magnetometry measurements that indicate the development of an anisotropic
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σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the
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provided by recent magnetometry measurements that indicate the development of an anisotropic
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a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

4

|↵i ⌘ |±i

1/2 integer

Integer

Mott, ‘73

~k� ~k�↵V V

“Γ5” non-Kramers doublet 5f2
|�,±i = a| ± 3i+ b|⌥ 1i

h+|J±|�i = 0



Symmetry Implications of giant Ising anisotropy

kEf

E(k)

unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An
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component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.
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role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic
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metry and is thus distinct from conventional magnetism.
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provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),
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component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization
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H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve
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σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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are Ising in nature (1, 23). While Ising anisotropy is automatic in integer spin doublets, in the

tetragonal crystalline environment of URu2Si2 the mixing of states differing by four quanta of

angular momenta (±4h̄) means that the Ising selection rule is absent for half-integer spins so

Ising anisotropy can not occur without extreme fine tuning (4). Thus an Ising anisotropy of the

itinerant quasiparticles requires an integer spin 5f 2 configuration for the U ion; moreover the

observation of paired Ising quasiparticles in a superconductor with Tc ∼ 1.5K indicates that

this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).

The conjectured hybridization of conduction electrons with an integer spin doublet in URu2Si2

has profound implications for the relationship of hidden order to time-reversal symmetry. Time-

reversal, denoted by Θ, is distinct from other discrete quantum symmetry operations as a anti-

unitary transformation ; consequently there is no conserved quantum number associated with

time-reversal (25). However double-reversal Θ2, is equivalent to a 2π rotation, forming a unitary

operator with an associated quantum number, the “Kramers index” K (25). The Kramers index,

K = (−1)2J of a quantum state of total angular momentum J defines the phase factor acquired

by its wavefunction after two successive time-reversals,Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An integer spin

state |m⟩ is unchanged by a 2π rotation, so |m2π⟩ = +|m⟩ and K = 1. However, conduction

electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (V |kσ⟩⟨m| + H.c) that does not conserve the Kramers index. After two successive time-
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Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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angular momenta (±4h̄) means that the Ising selection rule is absent for half-integer spins so

Ising anisotropy can not occur without extreme fine tuning (4). Thus an Ising anisotropy of the

itinerant quasiparticles requires an integer spin 5f 2 configuration for the U ion; moreover the

observation of paired Ising quasiparticles in a superconductor with Tc ∼ 1.5K indicates that

this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).

The conjectured hybridization of conduction electrons with an integer spin doublet in URu2Si2

has profound implications for the relationship of hidden order to time-reversal symmetry. Time-

reversal, denoted by Θ, is distinct from other discrete quantum symmetry operations as a anti-

unitary transformation ; consequently there is no conserved quantum number associated with

time-reversal (25). However double-reversal Θ2, is equivalent to a 2π rotation, forming a unitary

operator with an associated quantum number, the “Kramers index” K (25). The Kramers index,

K = (−1)2J of a quantum state of total angular momentum J defines the phase factor acquired

by its wavefunction after two successive time-reversals,Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An integer spin

state |m⟩ is unchanged by a 2π rotation, so |m2π⟩ = +|m⟩ and K = 1. However, conduction

electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form
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metry and is thus distinct from conventional magnetism.
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provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form
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component, change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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are Ising in nature (1, 23). While Ising anisotropy is automatic in integer spin doublets, in the

tetragonal crystalline environment of URu2Si2 the mixing of states differing by four quanta of

angular momenta (±4h̄) means that the Ising selection rule is absent for half-integer spins so

Ising anisotropy can not occur without extreme fine tuning (4). Thus an Ising anisotropy of the

itinerant quasiparticles requires an integer spin 5f 2 configuration for the U ion; moreover the

observation of paired Ising quasiparticles in a superconductor with Tc ∼ 1.5K indicates that

this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).

The conjectured hybridization of conduction electrons with an integer spin doublet in URu2Si2

has profound implications for the relationship of hidden order to time-reversal symmetry. Time-

reversal, denoted by Θ, is distinct from other discrete quantum symmetry operations as a anti-

unitary transformation ; consequently there is no conserved quantum number associated with

time-reversal (25). However double-reversal Θ2, is equivalent to a 2π rotation, forming a unitary

operator with an associated quantum number, the “Kramers index” K (25). The Kramers index,

K = (−1)2J of a quantum state of total angular momentum J defines the phase factor acquired

by its wavefunction after two successive time-reversals,Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An integer spin

state |m⟩ is unchanged by a 2π rotation, so |m2π⟩ = +|m⟩ and K = 1. However, conduction

electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-
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reversals

V |kσ⟩⟨m| → V 2π|kσ2π⟩⟨m2π| = −V 2π|kσ⟩⟨m|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that V = −V 2π; the hy-

bridization thus breaks time-reversal symmetry in a fundamentally new way, playing the role of

an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic (Latin:

spear) order”, is a state of matter that breaks both single and double time-reversal symmetry and

is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (18). As noted elsewhere (12),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

state (12), under the special condition that d(−k) = −d∗(k) to avoid time-reversal symmetry

breaking. However, if the scattering process involves resonant hybridization in the f-channel,

then d(k) is associated with resonant scattering off the f-state, a process with a real, even parity

scattering amplitude, d(k) = d(−k). In this case, the observed t-matrix is necessarily odd under

time-reversal in the hidden order phase.

This reasoning also explains a puzzling aspect of neutron scattering experiments. Under

pressure, URu2Si2 undergoes a first-order phase transition from the hidden order (HO) state to

an antiferromagnet (AFM) (26). These two states are remarkably close in energy and share

many key features (19, 27, 28) including common Fermi surface pockets; this motivated the re-

cent proposal that despite the first order transition separating the two phases, they are linked by

“adiabatic continuity,” (27) corresponding to a notional rotation of the HO in internal parameter
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this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).
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electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, soK = −1.
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Figure 1: (a) A normal Kondo effect occurs in ions with an odd number of f-electrons, where the ground
state is guaranteed to be doubly degenerate by time-reversal symmetry (known as a Kramers doublet).
Virtual valence fluctations to an excited singlet state are associated with a scalar hybridization. (b) In
URu2Si2, quasiparticles inherit an Ising symmetry from a 5f2 non-Kramers doublet. Loss or gain of an
electron necessarily leads to an excited Kramers doublet, and the development of a coherent hybridization
is associated with a two-component spinor hybridization that carries a magnetic quantum number and
must therefore develop at a phase transition. (c) Phase diagram for hastatic order, showing how tuning
the parameter λ ∝ (P − Pc). leads to a spin flop between hastatic order and Ising magnetic order. Inset:
at the 1st order line, the longitudinal spin gap is predicted to vanish as ∆ ∝

√
Pc − P . (d) Polar plot

showing the predicted cos4 θ form of the non-linear susceptibility χ3 induced by hastatic order, where θ
is the angle of the field from the c-axis.
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corresponding to time-reversed configurations on alternating layers A and B, leading to a large

staggered Ising moment; in the HO state, it points in the basal plane

ΨA ∼
1√
2

(

e−iφ/2

eiφ/2

)

, ΨB ∼
1√
2

(

−e−iφ/2

eiφ/2

)

, (5)

where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure Ising

character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO and

AFM in terms of a single Landau functional for the free energy

f [T, P ] = α(Tc − T )|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (6)

where γ = η(P − Pc) is a pressure-tuned anisotropy term. The phase diagram predicted by this

free energy is shown in Fig. 1 (c). When P < Pc(T ), the vector Ψ†σ⃗Ψ = |Ψ|2(nx, ny, 0) lies

in the basal plane, resulting in hastatic order. At P = Pc, there is a first order “spin-flop” into

an magnetic state where Ψ†σ⃗Ψ = |Ψ|2(0, 0,±1) lies along the c-axis. In the HO state, rotations

between hastatic and AFM order will lead to a gapped Ising collective mode at wavevector which

we identify with the longitudinal spin fluctuations observed in inelastic neutron scattering (30).

At the first order line, P = Pc, the quartic anisotropy term vanishes; we predict that the gap to

longitudinal spin fluctuations will vanish according to ∆ ∝
√

γ|Ψ|2 ∼ |Ψ|
√

Pc(T )− P (for

more details see supporting online material). Experimental observation of this feature would

provide direct confirmation of the adiabatic connection and the common origin of the hidden and

AFM order.

We now present a microscopic model that relates hastatic order to the valence fluctuations

in URu2Si2. Our theory is based on a two-channel Anderson lattice model where the uranium

ground-state is a 5f 2 Ising Γ5 doublet (4), |±⟩ = a| ± 3⟩+ b|∓ 1⟩, written in terms of J = 5/2

f-electrons in the three tetragonal orbitals Γ±
7 and Γ6

|+⟩ = (af †

Γ−

7 ↓
f †

Γ+
7 ↓

+ bf †
Γ6↑

f †

Γ+
7 ↑
)|0⟩

6

Landau Theory of Hastatic Order

heavy fermions. However valence fluctuations from a 5f 2 ground-state create excited states with

an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b).

In this case, the quasiparticle hybridization has two components, Ψσ that determine the mix-

ing of the excited Kramers doublet into the ground-state. These two amplitudes form a spinor

defining the “hastatic” order parameter

Ψ =

(

Ψ↑

Ψ↓

)

. (3)

The presence of distinct up/down hybridization components indicates that Ψ carries the global

spin quantum number; its development must now break time-reversal and spin rotational invari-

ance via a phase transition. In the magnetic phase, this spinor points along the c-axis

ΨA ∼
(
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f-electrons in the three tetragonal orbitals Γ±
7 and Γ6
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f †
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f †

Γ+
7 ↑
)|0⟩

|−⟩ = (af †

Γ−

7 ↑
f †

Γ+
7 ↑

+ bf †
Γ6↓

f †

Γ+
7 ↓
)|0⟩. (7)

The lowest lying excited state is most likely the 5f 3 (J = 9/2) state, but for simplicity here we

take it to be the symmetry-equivalent 5f 1 state. Valence fluctuations from the ground state (Γ5)

to the excited state (Γ+
7 ) occur in two orthogonal conduction channels, (33, 34) Γ−

7 and Γ6. This

allows us to read off the hybridization matrix elements of the Anderson model

HV F (j) = V6ψ
†
Γ6±

(j)|Γ+
7 ±⟩⟨Γ5 ± |+ V7ψ

†
Γ7∓

(j)|Γ+
7 ∓⟩⟨Γ5 ± |+H.c.. (8)

where ± denotes the “up” and “down” states of the coupled Kramers and non-Kramers dou-

blets. The field ψ†
Γσ(j) =

∑

k

[

Φ†
Γ(k)

]

στ
c†kτe

−ik ·Rj creates a conduction electron at site j with

spin σ in a Wannier orbital with symmetry Γ ∈ {6, 7}, while V6 and V7 are the corresponding

hybridization strengths.

Hastatic order is revealed by factorizing the Hubbard operators,

|Γ+
7 σ⟩⟨Γ5α| = Ψ̂†

σχα. (9)

Here Ψ̂†
σ is a boson representing the excited f 1 doublet, |Γ+

7 σ⟩ = Ψ̂†
σ|Ω⟩: Ψ̂†

σ carries a half-integer

magnetic moment and a positive charge +e. Hastatic order is the condensation of this boson,

generating a hybridization of the conduction electrons with the Ising 5f 2 state; here represented

by the pseudo-fermion χ†
α, |Γ5α⟩ = χ†

α|Ω⟩. The Γ5 doublet has both magnetic and quadrupolar

moments represented by χ†σ⃗χ = (Ox2−y2 ,Oxy,mz), where mz is the Ising magnetic moment

and Ox2−y2 and Oxy are quadrupole moments.

Using this factorization, we can rewrite the valence fluctuation term as,

HV F (j) =
∑

k

c†kσV̂ση(k, j)χη(j)e
−ik ·Rj +H.c. (10)
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where V̂(k, j) = V6ΦΓ6

†(k)B̂†
j + V7ΦΓ−

7

†(k)B̂†
jσ1, B̂j =

(

Ψ̂↑ 0
0 Ψ̂↓

)

. In the ordered state,

Bj = ⟨B̂j⟩ is replaced by its expectation value. In a magnetic state, the diagonal entries of Bj

alternate between layers, but in a hastatic state, both entries are finite

B†
j = |Ψ|

(

ei(Q ·Rj+φ)/2 0
0 e−i(Q ·Rj+φ)/2

)

≡ |Ψ|Uj, (11)

with magnitude |Ψ|. The internal angle, φ, rotates Bj within the basal plane, tuning the HO

state. As the HO and AFM appear to share a single commensurate wavevector, Q = (0, 0, 2πc )

(17, 27, 28), we use this wavevector here. It is convenient to absorb the unitary matrix, Uj into

the pseudo-fermion, χ̃j = Ujχj . In this gauge, one channel (Γ6) is uniform, while the other (Γ−
7 )

is staggered

HV F =
∑

k

c†kV6(k)χk + c†kV7(k)χk+Q + h.c. (12)

where the hybridization form factors V7(k) = V7Φ7
†(k)σ1 and V6(k) = V6Φ6

†(k).

One of the key elements of the hastatic theory is the formation of mobile Ising quasiparticles,

and the observed Ising anisotropy enables us to set some of the parameters of the theory. The

staggered order guarantees that the mean-field Hamiltonian is invariant under the combination

of time-reversal and a translation along the c-axis, leading to a two-fold spin degeneracy at each

point in momentum space which is Zeeman-split in an applied magnetic field. The Zeeman

coupling to the the non-Kramers 5f 2 doublet is purely Ising, while that of conduction band is

isotropic. Thus when the field points along the c-axis, the g-factor reflects the full f-electron

contribution g∗, but when the field points in the basal plane it is determined by the small fraction

of conduction electrons hybridized into the quasiparticle band, of order TK/D, where TK is the

Kondo temperature and D is the band-width cut-off; in summary the full anisotropic g-factor is

then determined by g(θ) ≈ g∗ cos θ + gc
(

TK

D

)

where gc = 2. Experimentally (18), the g-factor

anisotropy is approximately gz/g⊥ ≈ 30, which enables us to phenomenologically set the ratio

9

Hastatic 1.0

(Needs Serious Revision)



Ising QP’s pair condense.

Superconductivity:  Giant Ising Anisotropy

Ising  degeneracy to within 

Altarawneh et al PRL 108, 066407 (2012); Brison et al 
Physica C 250 128 (1995).

g(✓) / cos(✓)

Does this behavior survive to higher temperatures in

               the Hidden Order phase ??

Text
Text



F = ��1(✓)
H2

2
� �3(✓,�)

H4

4

The Nonlinear Susceptibility in a Tetragonal Environment

Field-Dependent Part of Free Energy 

g(✓)��3(✓) is a direct thermodynamic probe of 
at the Hidden Order transition !! 

      

 


 



�1(✓, T ) = �(0)
1 + �Ising

1 (T ) cos2 ✓

J. Trinh et al (2016)



J. Trinh et al (2016)

��3(✓) = ��Ising
3 (T ) cos4 ✓



��3(✓) / (cos

2 ✓ + � sin

2 ✓)2

Robustness of Ising Anisotropy

J. Trinh et al (2016)



F [ ~H] = F [Hz] ! HZeeman / �JzBz

Ising Quasiparticles at the Hidden Order Transition !!

U moments are Ising  h+|J±|�i = 0

Integer S   (      )5f2

Single-Ion Physics

Confirmed by DMFT and high-resolution RIXS

Also underlying itinerant ordering process (with Ising anisotropy!)

How to reconcile single-ion

and itinerant perspectives ??

(Haule, Kotliar 09) (Wray et al. 15)
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Integer spinMultipole

P. Coleman, R. Flint and PC,   Nature 493, 611 (2013)
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Integer spin

Observation of Anisotropic Conduction Fluid

Multipole
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 Raman Buhot et al.., PRL (2014)

Kung et al., Science (2015)

Most significant T-dependence at the HO transition is in

                     the A2g channel

Constraints on

    theory?
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 Raman Buhot et al.., PRL (2014)

Kung et al., Science (2015)

Jz transforms under A2g !!

Scales nicely with c-axis

magnetic susceptibility !!

Beautiful spectroscopy of  

consistent with previous neutron results

at finite wavevector (analogous to SANS)
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 Raman Buhot et al.., PRL (2014)

Kung et al., Science (2015)

Crystal-field Hamiltonian expanded to linear order in the electromagnetic stress tensor 

(in tetragonal environment)

where

oscillatory field components of

stress-energy tensor


Poynting vector

More work to be done to determine which term is larger (particularly in the presence of large 
spin-orbit coupling)
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Nernst Effect
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Is this giant Nernst effect a signature of exotic superconductivity

or is it telling us something crucial about the Hidden Order phase?

Nernst Effect
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Conclusions (for now)

• Recent Raman, elastoresistivity and RIXS measurements 
emphasize the importance of the Ising response, the 
multicomponent nature of Hidden Order parameter and 
the Gamma_5 U ground-state.....this all combined with the 
previous observation of Ising quasiparticles continues to 
suggest a spinor order parameter.  Hidden order 
parameter has Ising anisotropy.


• Previous microscopics (Hastatic 1.0) must be revised to 
improve band structure (details of conduction electrons) 
and modelling of AFM phase (f-f hopping)


• Experiments we’d love to see:


              Knight shift as a function of angle 

              dHvA on all the heavy fermi-surface pockets

              Spin zeroes in the AFM phase (finite pressure)

              Low temperature probes of the 5f valence

P. Coleman, R. Flint and PC,   Nature 493, 611 (2013)

                                   Phil. Mag. 94, 32-33 (2014)

                                   PRB 91, 205103 (2015)
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Broader Implications of Hastatic Order : A New Kind 
of Landau Order Parameter ?

Conventionally Landau theory in electronic systems 
based on formation and condensation of two-body 

bound states

e.g. s-wave superconductivity

When two-body bound-state wavefunction carries 
quantum number (spin, charge..), symmetry broken  

All order parameters are bosons with integer spin !!  
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Hastatic order generalizes Landau’s concept to three-body bound-states

 

(Natural in heavy fermions, for the conventional Kondo effect is the formation of a three-body bound-state  between a 
spin flip and conduction electron. However, in the conventional Kondo effect, the three body wavefunction carries no 
quantum number and is not an order parameter.  )

A new column in the classification of order parameters ?? 

                 Bound state of three fermions 

                    where the resulting fermionic bound-state 

                    carries integer spin while its 3-body 

                    wavefunction has 1/2 integer spin

Half integer  OP 

                 (non-relativistic) 

    

      Hastatic order transforms under a double-group representation of the     
underlying symmetry group......order parameter fractionalization !! 
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Open Questions

• For Hastatic Order of URS

   

   Development of Hastatic 2.0....new predictions ??

   

• Emergence of Superconductivity from the HO State?      

              

• Other examples of Hastatic Order?

    (non-Kramers doublets in Pr and U materials)


• Direct Experimental Probe of Double-Time Reversal?


• Broader Implications:  a new kind of broken

 symmetry where the order parameter transforms under

 a DOUBLE GROUP  (S = 1/2) representation

     (symmetry analysis and Landau theory ??)
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Thank you !!!


