

Universität Konstanz

Transmission of pure spin currents through ferroic collinear multilayers

Hvar workshop, October 2nd, 2017

<u>J. Cramer</u>, F. Fuhrmann, U. Ritzmann, V. Gall, T. Niizeki, R. Ramos, Z. Qiu, D. Hou, T. Kikkawa, J. Sinova, U. Nowak, E. Saitoh, M. Kläui

Institute for Physics, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany Department of Physics, University of Konstanz, 78457 Konstanz, Germany WPI Advanced Institute for Materials Research Tohoku University, Sendai 980-8577, Japan

Magnonics – Magnon spintronics

- Magnonics Magnon spintronics¹
 - Transport/Processing of information via spin wave systems interfacing charge-driven spintronics
 - → Wave-based computing
 - \rightarrow Insulator-based spintronics

- Magnon spin currents by FMR spin pumping²
- Electric detection of magnon spin currents by inverse SHE⁴ (iSHE)

¹Chumak *et al.*, Nat. Phys. **11**, (2016) ²Tserkovnyak *et al.*, Phys. Rev. Lett. **11**, 117601 (2002) ³Uchida *et al.*, Proc. IEEE **104**, 1946 (2016) ⁴Sinova *et al.*, Rev. Mod. Phys. **4**, 1213 (2015)

Baibich et al., Phys. Rev. Lett. **61**, 2472 (1988) Binasch et al., Phys. Rev. B **39**, 4828(R) (1989)

- Giant magnetoresistance
 - → Film resistance depends on relative alignment of ferromagnets
- *Magnetoresistance* for spin currents?
 - i. Type of ferromagnets
 - ii. Magnon-conductive (MC) spacer
 - iii. Method of spin-wave generation

Investigated system: YIG/CoO/Co

i. Type of ferromagnets

- Insulating ferrimagnetic Y₃Fe₅O₁₂ (5 μm)
 - Magnetically soft
 - No electronic spin current
- Metallic ferromagnet Co (4-6 nm)
 - Inverse spin Hall effect¹

ii. Magnon-conductive spacer

- Insulating antiferromagnet CoO (2-5 nm)
 - De-coupling of ferromagnets
 - Exchange-biasing of Co layer

iii. Method of spin wave generation

- Ferromagnetic resonance spin pumping
 - Good signal-to-noise: $f \ge 4.5 \text{ GHz}$

¹Miao et al., Phys. Rev. Lett. **111**, 066602 (2013)

FMR in YIG/CoO (2 nm)/Co (4 nm)

- FMR resonance of Co not observed
- FMR resonance of YIG
 - YIG resonance further confirmed by Kittel formula
 - Resonance at RT above coercive field

Spin pumping in YIG/CoO (2 nm)/Co (4 nm)

Cobalt-dependent voltage signal

- Two possible origins of Co-peak
 - Anomalous Nernst signal due to microwave heating¹
 - Anomalous Hall effect induced spin rectification²

Cobalt-dependent voltage signal

- Two possible origins of Co-peak
 - Anomalous Nernst signal due to microwave heating¹
 - Anomalous Hall effect induced spin rectification²
 - Oheck temperature dependence

Switching (valve) effect

- Effective operation scheme
 - Spin pumping at fixed field
 - Determine field value with large and robust voltage changes
- Repetitive switching
 - Minor signal deviation

Origin of alignment-dependent signal

- Magnonic spin transport
 - Two magnon branches in AFM
 - Unique magnon polarization in FM
 - → Spin transmission in parallel state
- Electronic spin detection
 - Spin-dependent iSHE?

JGU

Conclusion

FMR spin pumping in YIG/CoO/Co

- Spin current detection amplitude depends on relative alignment of YIG/Co
 - \rightarrow Electronic origin likely
- Secondary signal appears at resonance

YIG

Microwave

CoO Co