

Weyl Semimetals

© Nature

<u>Claudia Felser,</u> Johannes Gooth, Chandra Shekhar, Nitesh Kumar and Yan Sun

Co-workers in Dresden and elsewhere

Kornelius Nielsch, IFW Dresden, Andrei Bernevig, Princeton, PIS ARPES team Johannes Gooth, IBM Zürich Uli Zeitler, et al. HFML - EMFL, Nijmegen; J. Wosnitza et al., HFML Rossendorf Yulin Chen et al., Oxford; S. S. P. Parkin et al., IBM Almaden, MPI Halle

Family of Quantum Hall Effects

Hall Effect

Spin Hall Effect

Anomalous Hall Effect

1985

Klaus von Klitzing

1998 Horst Ludwig Störmer and Daniel Tsui 2010

Andre Geim and Konstantin Novoselov

S Oh Science 340 (2013) 153

2016

David Thouless, Duncan Haldane und Michael Kosterlitz

Weyl Semimetals NbP, TaAs ...

Paul Klee

Weyl semimetals

Type I or II

3D topological Weyl semimetals - breaking time reversal symmetry – in transport measurement we should see:

1. Fermi arc

2. Chiral anomaly $\partial_{\mu} j_{\chi}^{\mu} = -\chi \frac{e^{3}}{4\pi^{2}\hbar^{2}} \boldsymbol{E} \cdot \boldsymbol{B}$ $\sigma_{a} = \frac{e^{3}v_{f}^{3}}{4\pi^{2}\hbar^{2}c} \boldsymbol{B}^{2},$

S. L. Adler, Phys. Rev. 177, 2426 (1969) J. S. Bell and R. Jackiw, Nuovo Cim. A60, 47 (1969) AA Zyuzin, AA Burkov - Physical Review B (2012) AA Burkov, L Balents, PRL 107 12720 (2012)

Weyl semimetals in non-centro NbP

Shekhar, et al. , Nature Physics 11 (2015) 645, Frank Arnold, et al. Nature Communication 7 (2016) 11615

Weng, et al. Phys. Rev. X 5, 11029 (2015) Huang et al. preprint arXiv:1501.00755

NbP, TaP, TaAs

Increasing spin orbit coupling increases – heavier elements Distance between the Weyl points increases

Weyl semimetals in non-centro NbP

NbP is a topological Weyl semimetal

- with massless relativistic electrons
- extremely large magnetoresistance of 850,000% at 1.85 K, 9T (250% at room temperature)
- an ultrahigh carrier mobility of 5*10⁶ cm² / V s

NbP and the Fermi surface

Klotz et al. Physical Review B 93 (2016) 121105(R)

Chiral Anomaly

E (meV) Anna Corinna Niemann, Johannes Gooth et al. Scientific Reports 7 (2017) 43394 doi:10.1038/srep4339 preprint arXiv:1610.01413

Chiral Anomaly

Experimental signatures for the mixed axial-gravitational anomaly in Weyl semimetals

- In solid state physics, mixed axial-gravitational anomaly can be identified by a positive magneto-thermoelectric conductance (PMTG) for Δ T || B.
- Low fields: quadratic

$$G_T = d_{\rm th} + c_2 a_\chi a_g B_{\parallel}^2$$

- High fields: deminishes
- $\Delta T \parallel B$ dictates sensitivity on alignement of B and ΔT .

Gravitational Anomaly

- Landsteiner, et al. Gravitational anomaly and transport phenomena. Phys. Rev. Lett. 107, 021601 (2011). URL
- Jensen, et al. Thermodynamics, gravitational anomalies and cones. Journal of High Energy Physics 2013, 88 (2013).
- Lucas, A., Davison, R. A. & Sachdev, S. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in weyl semimetals. PNAS 113, 9463–9468 (2016).

A positive longitudinal magneto-thermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields that vanishes in the ultra quantum limit.

Gravitational Anomaly

Hydrodynamics

PHYSICS

Electrons go with the flow in exotic material systems

Electronic hydrodynamic flow—making electrons flow like a fluid—has been observed

REFERENCES

- J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T.A. Ohki, K. C. Fong, *Science* 351, 1058 (2016).
- D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, M. Polini, *Science* 351, 1055 (2016).
- 3. P.J. W. Moll et al., Science 351, 1061 (2016).
- J.Zaanen, Y.-W.Sun, Y. Liu, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge Univ. Press, 2015).
- S.A. Hartnoll, P. K. Kovtun, M. Mueller, S. Sachdev, *Phys. Rev. B* 76, 144502 (2007).
- 6. A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009).
- M. Mueller, J. Schmalian, L. Fritz, Phys. Rev. Lett. 103, 025301 (2009).
- 8. M.S. Foster, I. L. Aleiner, Phys. Rev. B 79, 085415 (2009).
- A. Lucas, J. Crossno, K. C. Fong, P. Kim, S. Sachdev, http:// arxiv.org/abs/1510.01738 (2015).
- L Levitov, G. Falkovich, http://arxiv.org/abs/1508.00836 (2015).
- M. J. M. de Jong, L. W. Molenkamp, Phys. Rev. B 51, 13389 (1995).

- Hydrodynamic electron fluid is defined by momentum-conserving electronelectron scattering
- Violation of Wiedeman-Franz law
- Viscosity-induced shear forces making the electrical resistivity a function of the channel width

High mobility wires

PHYSICAL REVIEW B

VOLUME 51, NUMBER 19

15 MAY 1995-I

Hydrodynamic electron flow in high-mobility wires

M. J. M. de Jong^{*} and L. W. Molenkamp[†] Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands (Received 24 October 1994)

Hydrodynamic electron flow is experimentally observed in the differential resistance of electrostatically defined wires in the two-dimensional electron gas in (Al,Ga)As heterostructures. In these experiments current heating is used to induce a controlled increase in the number of electron-electron collisions in the wire. The interplay between the partly diffusive wire-boundary scattering and the electron-electron scattering leads first to an increase and then to a decrease of the resistance of the wire with increasing current. These effects are the electronic analog of Knudsen and Poiseuille flow in gas transport, respectively. The electron flow is studied theoretically through a Boltzmann transport equation, which includes impurity, electron-electron, and boundary scattering. A solution is obtained for arbitrary scattering parameters. By calculation of flow profiles inside the wire it is demonstrated how normal flow evolves into Poiseuille flow. The boundary-scattering parameters for the gate-defined wires can be deduced from the magnitude of the Knudsen effect. Good agreement between experiment and theory is obtained.

Weyl Semimetals WP2

WP₂ protected Weyl

WP₂ protected Weyl

Nitesh, et al., Nature Com. accepted arXiv:1703.04527

Macroscopic mean free path

Compound	ρ (Ωcm)	l (μm)	μ (cm²V ⁻¹ s ⁻¹)	n (cm ⁻³)
ΜοΡ	6 ×10 ⁻⁹	11	2.4×10 ⁴	2.9×10 ²²
WP ₂	3 ×10 ⁻⁹	530	4×10 ⁶	5×10 ²⁰
WC	0.35×10 ⁻⁶		~1×10 ⁴	4×10 ²⁰
PtCoO ₂	40 ×10 ⁻⁹	5	0.7×10 ⁴	2.2×10 ²²
PdCoO ₂	9 ×10 ⁻⁹	20	2.8x10 ⁴	2.4×10 ²²

WC J. B. He et al. arXiv:1703.03211 Pallavi Kushwaha, et al. Sci. Adv.1 (2015) e150069 P. Moll Science 351, (2016) 1061

Chandra Shekhar et al. arXiv:1703.03736 Nitesh, et al.; arXiv:1703.04527

Hydrodynamics

Ş

Hydrodynamic Electron Flow and Hall Viscosity

Thomas Scaffidi,¹ Nabhanila Nandi,² Burkhard Schmidt,² Andrew P. Mackenzie,^{2,3} and Joel E. Moore^{1,4}

In the ballistic regime ($w \le l_{er}, l_{mr}$): $\rho \sim w^{-1}$

Hydrodynamic effects become dominant

- electron-electron scattering $I_{er} << w << I_{mr}$,
- with electron-electron scattering length $I_{er} = v_F \tau_{er}$
- w the sample width,
- $I_{mr} = v_F \tau_{mr}$ the mean free path and v_F the Fermi velocity

In the Navier-Stokes flow limit: $\rho = m^*/(e^2n) \cdot 12 \eta w^{-2}$

- R. N. Gurzhy, A. N. Kalinenko, A. I. Kopeliovich, Hydrodynamic effects in the electrical conductivity of impure metals. *Sov. Physics-JETP*. **69**, 863–870 (1989).
- P. S. Alekseev, Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117 (2016).
- T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, J. E. Moore, Hydrodynamic Electron Flow and Hall Viscosity. *Phys. Rev. Lett.* **118**, 226601 (2017).

Hydrodynamic flow

Hydrodynamic flow

- Hydrodynamic electron fluid <15K
- conventional metallic state at T higher 150K

The hydrodynamic regime:

a viscosity-induced dependence of the electrical resistivity on the square of the channel width

$$\rho = m^* / (e^2 n) \cdot 12 \eta w^{-2}$$

a strong violation of the

$$L \equiv \frac{\kappa}{\sigma T} = \frac{\pi^2}{3} \equiv L_0$$

J. Gooth et al. submitted, arXiv:1706.05925

Magnetohydrodynamics, Planckian bound of dissipation

Α Β 1.0 V, T = 4 Kbeam width w 0.4 µm 4 0.8 2.5 μm 5.6 um *ow*² (pΩcm⁻³) η(10⁻² m²s⁻¹ 3 0.6 9.0 μm fit 2 0.4 0.2 B = 0 Te. 0.0 0 -6 -3 3 6 0 -9 9 **B**(T) e. С 10⁻⁹ τ_{mr} **10**⁻¹⁰ Planckian Dissipation $B \neq 0 T$ 10⁻¹¹ Bound S e. **10**⁻¹² 0 e. **10**⁻¹³ X 10⁻¹⁴ 10 100 V *T* (K)

Grey dots:

the magnetohydrodynamic model in the Navier-Stokes flow limit

Momentum relaxation times $t_{\rm mr}$

thermal energy relaxation times $t_{\rm er}$,

Dashed line marks the Planckian bound on the dissipation time $\tau_{\hbar} = \frac{\hbar}{(k_B T)}$.

J. Gooth et al. submitted, arXiv:1706.05925

Viscosity of the electron fluid in WP₂

The dynamic viscosity is $\eta_{\rm D}$ = 1×10⁻⁴ kgm⁻¹s⁻¹ at 4 K.

MoP better than Copper

3D-Hydrodynamics ?

B. Q. Lv, Z.-L. Feng & Q.-N. Xu et al. Nature 546, (2017) 627

MoP – low T transport

Violation of the Wiedemann-Franz law

Giant Nernst – Topology - Hydrodynamic

Magnetic Weyl Semimetals

Paul Klee

Tuning the symmetry

Weyl semimetals with 26 VEC

Guoqing Chang et al., arXiv:1603.01255

Barth et al. PRB 81, 064404 2010

AHE in half metallic ferromagnets

PHYSICAL REVIEW B 85, 012405 (2012)

Berry curvature and the anomalous Hall effect in Heusler compounds

Jürgen Kübler^{1,*} and Claudia Felser²

Compound ^a	N_V	<i>a</i> (nm)	Mexp	<i>M</i> ^{calc}	σ_{xy}	P (%)
Co ₂ VGa	26	0.5779	1.92	1.953	66	65
Co ₂ CrAl	27	0.5727	1.7	2.998	438	100
Co ₂ VSn	27	0.5960	1.21	1.778	-1489	35
Co ₂ MnAl	28	0.5749	4.04	4.045	1800	75
Rh ₂ MnAl	28	0.6022		4.066	1500	94
Mn ₂ PtSn ^b	28	0.4509 (1.3477)		6.66	1108	91
Co ₂ MnSn	29	0.5984	5.08	5.00	118	82
Co ₂ MnSi	29	0.5645	4.90	4.98	228	100

FIG. 4. (Color online) Band structure near the Fermi edge of Co_2VSn . Majority-spin electron states appear in red, minority-spin states in black. Note the Dirac cone at the Γ point at about -0.22 eV.

AHE in half metallic ferromagnets

Giant AHE in Co₂MnAl $\sigma_{xv} = 1800 \,\text{S/cm}$ calc. $\sigma_{xv} \approx 2000 \,\text{S/cm}$ meas. Co₂MnAl 1.0 0.5 Energy [eV] 0.0 -0.5 -1.0, L

Kübler, Felser, PRB 85 (2012) 012405 Vidal et al. APL. 99 (2011) 132509 Kübler, Felser, EPL 114 (2016) 47005.

Weyl points are the origin for a large Berry phase and a Giant AHE

Co₂YZ (Y = IVB or VB; Z = IVA or IIIA)

 $L2_1$ space group 225 (Fm $\overline{3}$ m)

Without SOC

With SOC

Symmetry and electronic structures depend on the magnetization direction

Phys. Rev. Lett. 117, 236401 (2016) Sci. Rep. 6, 38839 (2016)

- nodal line is formed in the plane when bands of opposite mirror eigenvalues cross.
- □ Mirror planes are related to each other by the rotations

Berry and Heusler – and ARPES

Wang,
7 Arun Bansil,
7 Hsin Lin, 2,3 Claudia Felser,
4 and M. Zahid Hasan $^{1,8,9,\,\dagger}$

How much Topology Influences the Anomalous Hall Effection

Large Anomalous Hall angle effect

Large Anomalous Hall angle effect

$$\Theta_{AHE} = \Delta \sigma_{xy}^{A} / \sigma_{xx}$$
$$\sigma_{xy}^{A}(\mu) = ie^{2} \left(\frac{1}{2\pi}\right)^{3} \int_{k} dk \sum_{E(n,k) < \mu} f(n,k,\mu) \Omega_{n,xy}(k)$$

We are looking for a large Berry curvature And a small charge carrier concentration

Goal: thin films for QAHE

More semiconductors

Magnetic Heusler compounds with and without inversion

 Co_2MnAl L2₁ space group 225 (Fm $\overline{3}$ m) Mn₂CoAl X space group 216 (F43m)

Weyl or Spingapless

Weyl or Spingapless

... more spin gapless

 $t_{1u}(t_2)$

MnP and CuMnAs

First-principles calculations of the magnetic and electronic structures of MnP under pressure

Yuanji Xu¹, Min Liu^{1,2}, Ping Zheng¹, Xiangrong Chen², Jin-guang Cheng¹, Jianlin Luo^{1,3,4}, Wenhui Xie⁵ and Yi-feng Yang^{1,3,4,*}

Artificial Antiferromagnets

Topology – Chemistry

B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, B. Andrei Bernevig, Nature in press arXiv:1703.02050

Summary

The class of topological materials ranges from

- Topological insulators
- Dirac and Weyl semimetals
- New metallic Fermions

Non magnetic Weyl semimetals show Fermi arcs and a chiral anomaly

Electronic properties were studied extensively, while the thermal properties are still unexplored

Hydrodynamic flow of electrons might be more common in topological materials with high spin orbit coupling and can lead to new interesting applications

In magnetic Weyl semimetals the Berry curvature has impact on the classical properties and might lead to the identification of QAH with high Curie tempertature

Single Crystals available

BaCr2As2	AlPt	MoSe2-xTex	Ag2Se	YPtBi	YbMnBi2
BaCrFeAs2	GdAs	MoTe2-xSex	lrO2	NdPtBi	Ni2Mn1.4In0.6
	CoSi	MoTe2 (T´/2H)	OsO2	GdPtBi	YFe4Ge2
CaPd3O4			ReO2	YbPtBi	
SrPd3O4	MoP	PtTe2	WP2	ScPdBi	Mn1.4PtSn
BaBiO3	WP	PtSe2	MoP2	YPdBi	
		PdTe2		ErPdBi	CuMnSb
Bi2Te2Se	TaP	PdSe2	VAI3	GdAuPb	CuMnAs
Bi2Te3	NbP	OsTe2	Mn3Ge	TmAuPb	
Bi2Se3	NbAs	RhTe2	Mn3lr	AuSmPb	Co2Ti0.5V0.5Sn
BiSbTe2S	TaAs	TaTe2	Mn3Rh	AuPrPb	Co2VAl0.5Si0.5
BiTel	NbP-Mo	NbTez	Mn3Pt	AuNdPb	Co2Ti0.5V0.5Si
BiTeBr	NbP-Cr	WSe2) n	V .5 St	Mn2CoGa
BiTeCl	TaP-Mo	HfTe5		uLusn	Co2MnGa
	TaAsP	MoTe2		AuYSn	Co2Al9
LaBi, LaSb		TaS2		ErAuSn	Co2MnAl
GdBi, GdSb	CrNb3S6	PdSb2		EuAuBi	Co2VGa0.5Si0.5
	V3S4	CuxWTe2			Co2TiSn
HfSiS	Cd3As2	FexWTe2		CaAgAs	Co2VGa
		WTe2			Co2V0.8Mn0.2Ga
Bi4I4	MnP	Co0,4TaS2		KMgSb	CoFeMnSi
	MnAs	Fe0,4TaS2		KMgBi	
BaSn2		,		KHgSb	
				KHgBi	
				LiZnAs	

LiZnSb