

Advanced Magnonics

Burkard Hillebrands

Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

Leibniz Institute for Solid State and Materials Research (IFW), Dresden, Germany

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Post CMOS?

CMOS is coming to the end of Moore's law

- Waste energy production
- End of scaling

Beyond current CMOS:

- Faster computing, less energy consumption
- Same technology for logic and data
- Logic circuits with reduced footprint and/or 3D

Novel paradigm: wave computing

M. Mitchell, Nature 530, 144 (2016)

Proposal:

use waves /wave packets instead of particles (electrons) for bit representation

Coherent dynamics: spin waves and magnons

MAGNON quasi-particle :

Spin waves spectra of a YIG film

Yttrium Iron Garnet (YIG, Y₃Fe₅O₁₂)

- Room temperature ferrimagnet
 (*T*_c = 560 K)
- Low phonon damping
- Magnon lifetime up to 700 ns !

Scientific Research Company "Carat", Lviv, Ukraine

- Lattice constant 12.376 Å
- Unit cell 80 atoms

8 octahedral iron atoms (spin 5/2 up) 12 tetrahedral iron atoms (spin 5/2 down)

Magnetic moment of a unit cell is 20 Bohr magnetons μ_{B} at zero temperature

Burkard Hillebrands

Spin, charge and energy transport in novel materials Hvar,

Excitation of dipolar spin waves

Input microwave signal

Brillouin light scattering spectroscopy

Brillouin light scattering process

= inelastic scattering of photons from spin waves

Time-, space- and wavevector-resolved Brillouin light scattering spectroscopy

Magnon computing

Why spin waves?

- wavelength down to nanometer, frequency up to several THz
- interference effects easily accessible
- efficient nonlinear effects
- room temperature
- no Joule heat, "insulatronics"
- wave-based computing: smaller footprint, all-wave logic
- good converters to CMOS
 → "magnon spintronics"

Achievements Logic gates

Magnon transistor

Andrii Chumak, Kaiserslautern

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Computing principles

- Classical Computing
 - Scalar variable
 - Boolean logic
 - CMOS
- Wave Packet Computing
 - Vector variable
 - Special task data processing
- Macroscopic Quantum State Computing
 - Vector state variable
- Quantum Computing
 - Vector state variable
 - Entanglement

"Magnonics" team

Kaiserslautern PI Team

A. Chumak

P. Pirro

V. Vasyuchka

A. Serga

Main External Collaborators

- M.P. Kostylev (University of Western Australia)
- V.S. L'vov (Weizmann Institute of Science, Rehovot, Israel)
- G.A. Melkov (National Taras Shevchenko University of Kyiv, Ukraine)
- E. Saitoh (Tohoku University, Sendai, Japan)
- A.N. Slavin (Oakland University, Rochester, USA)

AG Magnetismus

Prof. B. Hillebrands, Jun. Prof. A. V. Chumak, V. Lauer, Q. Wang, P. Frey,
B. Heinz, L. Mihalceanu, M. Kewenig, Dr. D. A. Bozhko, M. Schneider,
Dr. P. Pirro, M. Schweizer, Dr. habil. A. A. Serga, Dr. T. Langner, E. Wiedemann, A. Kreil,
Dr. A. Conca Parra, S. Steinert, M. Geilen, S. Keller, H. Schäfer, T. Noack, T. Fischer, T. Meyer,
Jun. Prof. E. Th. Papaioannou, F. Heussner, J. Greser, K. Fukuda (guest), Dr. V. I. Vasyuchka

Advanced magnonics

I. Magnon transistor

II. Magnonic supercurrents

Hot BE

Cold BEC

x

Magnon transistor

Magnon transistor allows for the control of one magnon current by another

Courtesy: Andrii Chumak (prepared for Hannovermesse)

What is a "magnonic crystal"?

Magnonic crystal – magnetic meta-material:

artificial medium with periodic lateral variation in magnetic properties

One-dimensional magnonic crystal:

Magnonic-crystal are engineered to have properties that may not be found in nature

 analogous to photonic and sonic crystals but operates with spin waves in the GHz frequency range

Band gaps – regions of the spectrum over which waves are not allowed to propagate

Band gaps – regions of the spectrum over which waves are not allowed to propagate

A.V. Chumak et al., Appl. Phys. Lett. 93, 022508 (2008)

Magnon transistor

Burkard Hillebrands

Magnon transistor

Opened: $R \rightarrow 0$ Gate magnon density

 $n_{\rm G} = 0$

Semi-closed: R > 0Gate magnon density $n_G > 0$

Closed: $R \rightarrow \infty$ Gate magnon density $n_G >> 0$

A.V. Chumak et al., Nat. Commun. 5:4700 (2014)

Burkard Hillebrands

Spin, charge and energy transport in novel materials

Hvar, October 1 - 7, 2017

Logic operations

XOR logic gate

Half adder

XOR gate requires 2 magnon transistors instead of 8 FET in CMOS

Burkard Hillebrands

Magnon directional coupler

Q. Wang et al., arXiv:1704.02255 (2017)

Summary I

1. Nonlinear magnon scattering opens access to all-magnon circuits

2. Proofs of principle shown for components like magnon transistor and magnon directional coupler

3. Current issues: scaling, nanoscale physics

Advanced magnonics

I. Magnon transistor

II. Magnonic supercurrents

Spin, charge and energy transport in novel materials Hvar, October 1 - 7, 2017

Macroscopic quantum states

Main idea: find macroscopic magnonic quantum state for information transfer and processing

- analogous to superconductivity (Josephson currents) and to superfluidity in ³He and ⁴He
- free of dissipation (apart from magnon-phonon and magnon-electron coupling)
- Bose-Einstein Condensate (BEC) of magnons
- Supercurrents in magnon condensates

Magnon gas

Spin, charge and energy transport in novel materials Hvar, October 1 - 7, 2017

Magnon distribution

Magnons are bosons (*s*=1) and thus as any quasi-particles are described by Bose-Einstein distribution with zero chemical potential

Control of magnon gas density by parametric pumping

Burkard Hillebrands

 $\vec{H}_{H_{c}}$

Spin, charge and energy transport in novel materials

Hvar, October 1 - 7, 2017

Control of magnon gas density by parametric pumping

Burkard Hillebrands

distribution

 $\overrightarrow{\vec{H}_{c}}$

Spin, charge and energy transport in novel materials

Hvar, October 1 - 7, 2017

Parametric magnons, gaseous phase, and magnon BEC

TECHNISCHE UNIVERSITÄT Temporal profiles of the magnon densities

Dynamics of condensed magnons $n_{\rm c}$, magnons in gaseous states $n_{\rm q}$

$$\frac{1}{\Gamma} \frac{dn_c}{dt} = -\lambda n_{in}(t) - n_c + n_g^3$$
$$\frac{1}{\Gamma} \frac{dn_g}{dt} = n_{in}(t) - n_g - n_g^3$$

 $n_{in}(t)$: magnons injected by pumping

- Γ : relaxation frequency
- λ : supercooling process intensity coefficient

Dynamics of condensed magnons in thermal gradient

Hvar, October 1 - 7, 2017

Magnonic supercurrents

Burkard Hillebrands

Spin, charge and energy transport in novel materials

Hvar, October 1 - 7, 2017

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using equations

Without thermal
gradient
$$\frac{\partial N_{g}}{\partial t} = -\Gamma_{g} N_{g} + \Gamma_{g} N_{p} e^{-\Gamma_{0}t} - A_{gb} N_{g}^{3} + A_{bg} N_{b}^{3}$$
$$\frac{\partial N_{b}}{\partial t} = -\Gamma_{b} N_{b} + A_{gb} N_{g}^{3} - A_{bg} N_{b}^{3} - A_{bc} (N_{b}^{3} - N_{cr}^{3}) \Theta(N_{b} - N_{cr})$$
$$\frac{\partial N_{c}}{\partial t} = -\Gamma_{c} N_{c} + A_{bc} (N_{b}^{3} - N_{cr}^{3}) \Theta(N_{b} - N_{cr})$$

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using equations

Dynamics of condensed magnons in thermal gradient - comparison with theory

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Dynamics of condensed magnons in thermal gradient - comparison with theory

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Hvar, October 1 - 7, 2017

Non-local measurements: supercurrent magnon transport

Non-local measurements: supercurrent magnon transport

Non-local measurements: supercurrent magnon transport

Burkard Hillebrands

Spin, charge and energy transport in novel materials

Hvar, October 1 - 7, 2017

- 1. Magnonics provides model system for macroscopic quantum phenomena
 - Room temperature experiments
 - Tool: Brillouin light scattering
- 2. First evidence for magnon supercurrent in a room-temperature magnonic Bose Einstein condensate found
- 3. Supercurrent depends on phase gradient induced by lateral temperature gradient

4. Bose Einstein magnon condensate with zero group velocity can be used for spin transport

9th JEMS Conference 2018

Joint European Magnetic Symposia

3-7 of September 2018 - Mainz, Germany

http://jems2018.org/

