Electron correlations in low-dimensional topological systems

Norio Kawakami Kyoto University

SPIN, CHARGE, AND ENERGY CURRENTS IN NOVEL MATERIALS, October 1 - 7, 2017 Hvar, Croatia

Kyoto University

Collaborators

Topological materials and exotic edge states

Kyoto University

ŧΕ

Topological Insulators

2D (Kane-Mele, Bernivig et al), 3D (Fu-Kane-Mele, etc)

Exotic edge (surface) states				
QHE (2D):	Chiral quasi particles			
Insulators (3D):	Dirac quasi-particles			
Superconductors:	Majorana quasi-particles			
三京都				

 \mathbf{Z}_2

Topological Insulators: weakly correlated

Topologically nontrivial properties Topological numbers

- 1D: polyacetylenewinding no.
- 2D: HgTe/CdTe, GaSb/InAs
- **3D:** $Bi_{1-x}Sb_x$, Bi_2Se_3 , Bi_2Te_3 , etc Z_2

Kyoto University

Observation of edge states in TIs

M.Kronig et al., Science 318(2008)766

Topological phases in correlated electron systems

Electron correlations + SO coupling

京都

How the interaction modifies the nature of topological insulators (superconductors) ?

- Same topological phase, different physics
 e.g. Topological Mott insulators
- 2. Reduction of topological classification e.g. 1D Kitaev chain $Z => Z_8$

(1) Topological Mott insulators

1 Topological Mott insulator

D. Pesin and L. Balents, Natute Phys. (2010)

Mott physics and band topology in materials with strong spin-orbit interaction

(1) Topological Mott insulator

Topological Mott insulators have not been confirmed yet even theoretically

Ir-based pyrochlores

may be candidates for Weyl semimetals

2D simple models with interaction

Kane-Mele model

Bernevig-Hughes-Zhang model

may not be topo Mott insulators

cf Yamaji et al. 2011

2 Reduction of Classification

(2) Reduction of classification

Fidkowski and Kitaev (2010)

For finite interaction, whether a system is topological (trivial): by examining presence (absence) of symmetry protected edge modes

	# of gapless edges						Classification	
Free-fermions	1	2	• • •	8	9	10	•••	Ζ
Correlated fermions	, 1	2	•••	0	1	2	•••	Z ₈

Kitaev chain $\times 8$: topologically trivial!

$$\mathbb{Z} \to \mathbb{Z}_8$$

1D, 2D, 3D

Correlation Effects in Topological Insulators/Superconductors

1. Topological Mott Insulator

Topological Mott insulatorEdge Mott states

京都

1D & 2D

• T-induced change in Fermi-Bose statistics 2D

2. Reduction of Topological Classification

CeCoIn₅/YbCoIn₅ superlattice a testbed for reduction of topological classification

Topological Mott Insulator in one dimension

Chiral symmetry protected TI

Yoshida, Peters, Fujimoto, NK

Kyoto University

Key words

Topological insulator (noninteracting)

1D topological insulator

e.g. chiral symmetry protected BDI

Su-Schrieffer-Heeger Model

Correlation ?

1D correlated electron systems

• topological Mott insulator

•edge Mott state

•interaction-driven topological transition

Topological properties

Topological invariant defined by Green's functionEntanglement spectrumcf. S.Manma

cf. S.Manmana *et al.* PRB 2012 Time-dep. DMRG

Correlated Su-Schrieffer-Heeger Model

(chiral symmetric)

$$H = H_{SSH} + U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + J \sum_{i} S_{ia} \cdot S_{ib}$$
$$U = \sum_{i\alpha} (-i i^{\dagger} - i \alpha + V i^{\dagger} - i \alpha + b + i)$$

$$H_{SSH} = \sum_{i\sigma} \left(-tc_{i+1a\sigma}^{\dagger}c_{ib\sigma} + Vc_{ia\sigma}^{\dagger}c_{ib\sigma} + h.c. \right)$$

Noninteracting case U=J=0Topological phase -t < V < t

S.Manmana *et al*. PRB 2012

Correlation effects : DMRG

Powerful tool for calculation of ground states, correlation function etc..

京都

Hubbard interaction

topological Mott insulatoredge Mott state

U-dependence (J=0)

For V=-0.4/t, nontrivial at U=0.

Nontrivial phase Crossover to Topological Mott ins.

Kyoto University

Edge Properties

Topological Mott insulator

京都

Edge Mott state emerges! still correlated

Kyoto University

Hubbard interaction + Exchange interaction

topological phase transition

Numerical results for U>0, J<0 (ferromagnetic)

For *V*=-*1.6t* ; trivial at U=0, J=0.

Summary of 1D systems

Topological Mott insulator 1D chiral symmetric class

- winding #
- entanglement spectrum

•Emergence of edge Mott states

charge gap
spin gapless
Absence of
"Shiba symmetry"

• Unconventional topological phase transition

京都

no gap-closing in DOS
gap-closing of spinons

Topological Mott phase in 2D ~ bilayer system~

T. Yoshida and NK (2016) H-Q. Wu, Z-Y. Meng, T. Yoshida, NK et al. (2016)

cf (double-layer graphen), Z. Bi et al. (2016)

Model (Bilayer Kane-Mele model with interaction)

For x-direction $t_{i,i+e_x} = t$ For other direction $t_{i,j} = 0.7t$

K. Slagle *et al.*, PRB (2015) Y.-Y. He, *et al.*, PRB (2016)

With changing T (or U)

• Topology : does not change σ^x_{sp}

$$\sigma^{xy}_{spin} \sim 2(\frac{e}{2\pi})$$

• Statistics of edge modes changes Fermi ←→ Bose

(H-Q. Wu, Y-Y. He, Y-Z You, T.Yoshida., N.K., C. Xu, Z-Y. Meng, and Z-Y. Lu (2016)

Platforms of 2D Topological Mott Insulators

1. Double layer graphen with B (repulsive interaction)

Z. Bi et al. arXiv:1602.03190 PRL(2017)

2. Kondo insulator SmB_6 thin layer

京都

R.-X. Zhang et al. arXiv:1607.0607

3. Cold atomic systems

Topological Haldane model was already realized (honeycomb)

Esslinger group, Nature 515 (2014)

Kyoto University

T. Yoshida and NK (2016) H-Q. Wu, Z-Y. Meng, T. Yoshida, NK et al (2016)

Reduction of Topological Classification ~ an experimental test bed ~

T. Yoshida, A. Daido, A. Yanase, NK (2017)

Reduction of topological classification by correlations

addressed by many groups.

YM Lu and A. V. Vishwanath (2012);
M. Levin and A. Stern (2012);
H. Yao and S. Ryu (2013);
S. Ryu and SC. Zhang (2012);
C. Wang, A. C. Potter, and T. Senthil (2014);

C.-T. Hsieh, T. Morimoto, and S. Ryu (2014);
Y.-Z. You and C. Xu (2014);
H. Isobe and L. Fu (2015);
T. Morimoto, A. Furusaki, and C. Mudry (2015)
X.Y. Song and A.P. Schnyder (2017)

Periodic table in correlated systems is obtained in 1, 2, and 3D

Symmetry class $U(1)$ only (A)	Reduction of free-fermion in 3D				
All	$\mathbb{Z}_2 \to \mathbb{Z}_2$				
AI	0				
AIII	$\mathbb{Z} o \mathbb{Z}_8$				
CII	$\mathbb{Z}_2 \to \mathbb{Z}_2$				
DIII	$\mathbb{Z} \to \mathbb{Z}_{16}$				
CI	$\mathbb{Z} o \mathbb{Z}_4$				

Reduction of topological classification by correlations

Theory on the reduction has been advanced recently.

But...

No candidate materials for confirming the reduction of classification

We propose

CeCoIn₅/YbCoIn₅ superlattice as a candidate material

Quad-layer superlattice: a candidate for the reduction

Non-interacting case: BdG-Hamiltonian with magnetic field

Chern numbers in the superconducting phase

Gapping out respecting R-symmetry

 $\psi_{-}^{\dagger}(x)\psi_{+}(x)$ breaks R-symmetry

Symmetry protected gapless modes

Testbed for reduction of Topo classification

We propose the CeCoIn₅/YbCoIn₅ superlattice system as a test bed of reduction of topological classification:

$\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}_8$

# of CeCoIn5 layers	$(u_{ m M}, u_{ m tot})$	# of Majorana	Protection (correlated)
2	(4,0)	4	yes
3	(1,0)	1	yes
4	(8,0)	8	NO

This might be observed with systematic STM measurement for 2,3,4,5,6,...layers

Correlation Effects in Topological Insulators/Superconductors

1. Topological Mott Insulator

Topological Mott insulatorEdge Mott states

京都

1D & 2D

• T-induced change in Fermi-Bose statistics 2D

2. Reduction of Topological Classification

CeCoIn₅/YbCoIn₅ superlattice a testbed for reduction of topological classification