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Create a macroscopic quantum MB system which does not thermalize  

       at any temperature  and retains the information locally ? 

Many-body localization: goal 

Ideal nonequilibrium system = absence of thermalization 

                                                   no d.c. transport            at any T ! 

                                                   nonergodicity of (all) correlations 

                                                   local quantitites : qubits 

                                                   no leakage of quantum information 

 

Two extremes: integrable systems – ideal conductivity at T > 0 

                          MBL – no transport at T > 0  



Outline 

 

  Why MBL is so fascinating ?  

  Experiments on MBL: cold atoms, spin chains ?   

  Characteristic features of MBL systems:  
       -  numerical results on the 'standard' model of MBL 
       -  vanishing d.c. transport and dynamical conductivity 
       -  non-ergodic behaviour of correlation functions 

  Is there MBL in 1D disordered Hubbard model  ?  
       -  decay of charge and spin correlations different 
       -  no full MBL 
   Counting local integrals of motion (LIOM)  



Anderson localization 

random, uncorrelated single – particle problem 



What is MBL and why is it so interesting ? 

Nonergodic behaviour in a macroscopic MB quantum system: T > 0   
   -  non-interacting (NI) fermions on disordered lattice:  Anderson localization 
   -  integrable MB models: Heisenberg chain etc… 
   -  systems undergoing phase transition (macroscopic ordering at T < Tc) 
   -  many-body-localized systems = correlations + large disorder  ? 

Basko, Aleiner, Altshuler (2006):   
-  MI transition at T=T* at fixed disorder  W 
-  MI transition at W=Wc even at  T = ∞ ! 

> 600 theoretical papers after 2006   > 100 papers / year      

 Does MBL exist (phase transition or crossover ..) ? 

Which are properties of the ergodic and non-ergodic phase ? 



'Standard' model of MBL 

1D isotropic (or anisotropic) Heisenberg model + random fields:  

Jordan – Wigner transformation (1D) 

equivalent to disordered chain of interacting spinless fermions 

 =      Anderson model + interaction    



W > Wc: 
    -  Poisson MB level statistics 
    -  vanishing d.c. transport – spin (particle) , energy 
    -  area (log) law for entanglement entropy increase    
    -  non-ergodic behaviour of (all) correlation functions, no thermalization 
    -  local integrals of motion  

T ~ ∞:  phase diagram (approximate ?)  

Bar Lev et al, PRL (2015) 

ergodic phase:   W < Wc (V) 

nonergodic (MBL) phase: W > Wc (V) 
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Cold atoms (fermions) on 1D optical lattice 

Schreiber et al, Science (2015): K40 atoms on 1D optical lattice  
                                              +  quasi-periodic (Andre-Aubry) disorder 

(charge) density imbalance I(t):  
non-ergodic for  large disorder Δ 

model: 1D Hubbard model with quasi-periodic (random) potential  



Bordia et al, PRL (2016): interacting fermions on coupled (Hubbard) 1D chains  
                                              +  identical (Andre-Aubry) disorder on all chains 

(C)DW decay only for |U| > 0 
+ transverse coupling 

experiments are on effective  
Hubbard model ! 



LMU, MPQE , München, A. Giersch 



Cold atoms on 3D random lattice 

Kondov et al, PRL (2015) 

3D lattice + random potential 

force via magnetic field  gradient: 

center-of-mass velocity 

MBL localization : disorder Δ > Δc  



Can MBL appear in real materials ? 

Shiroka et al. PRL (2011) 

random exchange Heisenberg chain: S=1/2  

NMR magnetization recovery: 

pure system: exponential decay 
random system: stretched exponential 

distribution of relaxation rate very 
broad, even singular at T  ~ 0  ? 



Herbrych et al., PRL (2013) 

random exchange Heisenberg chain: S=1/2  

dynamical spin structure factor: S(q,ω) distribution of 1/T1 local relaxation 

very broad distribution at T ~ 0    

no spin diffusion at T > 0 ? 

indication for MBL ?? 

but no random field, so SU(2) symmetry !   



random S=1 chain: in external field  

: large uniform magnetic field – mapping on S=1/2 model 

with random effective field ! 

Herbrych, Kokalj, PRB (2017) DTN: 
doped DTN: 

in doped DTN the field randomness too small for MBL at T = ∞ ? 

but possibly not for T > 0 ??   



      Numerical methods for MBL (dynamics)  

MBL numerical problem: T >> 0  + very long times - low  ω ! 

                         +  large sizes ? 



Characteristic features: entanglement entropy 

bipartite entanglement: subsystems A + B 

von Neumann entropy 

              S1(t) saturates for NI (Δ = 0) system 

S1(t) increases logarithmically for MBL (Δ = 0.5) system 

S1(t)  = c t  - linear increase for ‘normal’ system 

Žnidarič, Prosen, PP, PRB (2008) 



Characteristic feature: dynamical conductivity and d.c. transport 

Barišić et al, PRB (2010, 2016) 

Steinigeweg et al, PRB (2016) 

vanishing d.c. transport σ0 for W > Wc ~ 5  

sharp transition : 

 crossover ?? 

log ! 

theory : experiment 

T >> 1: 



Characteristic feature: nonergodicity and universal dynamics 

Mierzejewski et al., PRB (2016) density-wave (imbalance) correlation 
function: T = ∞, V = t (Δ=0.5), ED,  L = 16   

a) real-time dynamics: 
    oscillations emerging from NI physics 

b) ‘quasi’-time dynamics: 
     the same long-time variation 

nonergodic (MBL) phase: W > W* ~ 4 
C0 = C(t=∞) > 0  + anomalous time 
dependence   



MCLM: L = 26  

NI particles: response for W = 0  

normal metal:  
diffusion q ~ 0 pole for W < Wc 

 

MBL: 
delta ω ~ 0  peak for W > Wc   at all q ! 

PP, Herbrych, PRB (2017) 

W=0 

W=2 

W=4 

T = ∞,  Δ = 1  

Dynamical structure factor 



Cold atoms (fermions) on 1D optical lattice 

Schreiber et al, Science (2015): K40 atoms on 1D optical lattice  
                                              +  quasi-periodic (Andre-Aubry) disorder 

(charge) density imbalance I(t):  
non-ergodic for  large disorder Δ 

model: 1D Hubbard model with quasi-periodic (random) potential  



MBL in 1D Hubbard chain 

PP, Barišić, Žnidarič, PRB (2016)  

Hubbard model: more degrees of freedom – charge     +      spin  

  numerical calculation of imbalance correlations: MCLM 

charge  (CDW) correlations: 

 U=4, n=1, L= 8 - 14 

W=2: ergodic 

W=10: non-ergodic 

    expected ? 

potential disorder 



spin  (SDW) correlations: 

 U=4, n=1, L=8-14  

W=2: ergodic 

W=10: ergodic ? 

 

 U=4,  L=14  

charge: Wc ~ 4-6 

spin: no transition 

   no full MBL ! 



varying U: from Anderson localization to MBL ? 

charge  spin  

W > Wc : large disorder 

U > 0 induces weak decay of CDW, 

charge localization remains 

U > 0 leads to decay of SDW 

spin behaves ergodic 

W = 6 

disorder induced charge – spin separation !? 



Dynamical charge and spin conductivities: 

d.c. charge and spin conductivity: 

- σspin(0) always finite ? 

-  σcharge(0) – at W ~ 4 transition 
                                or crossover ?  

log ! 

charge spin 



Entanglement entropy: 

full MBL: 

the case with random field disorder 

Hubbard chain – potential disorder 

not full MBL ! 



Local integrals of motion 

LIOM 

Mierzejewski et al., arXiv (2017)  

1) local operators: create all with support M ! 

2) find time-averaged ones: constants of motion !  

3) find all orthogonal Qα with support M << L:   

- operator LIOM 



Counting LIOMs 

Disordered Heisenberg model: orthogonal LIOM ? Yes 

ED: 

M = 4, L = 8 – 14 

full MBL ! 

ergodic transition 

nonergodic 



Disordered Hubbard model: orthogonal LIOM ? No 

adding random magnetic field: full MBL 

 

only potential disorder: not full MBL 



Summary 

   
  ‘Standard’ model of MBL:  
       - two regimes: ergodic W < Wc, non-ergodic W > Wc 
       - non-ergodic regime: vanishing d.c. transport, C(t=∞) > 0 
       - many open questions: is the transition sharp or a crossover ?       

  Universal behaviour at the MBL transition:   
       - order parameter for MBL: imbalance stiffness: C0 = C(t=∞) > 0 ? 
       - better definition: universal critical dynamics - α = ζ = 1 ! 

  MBL in 1D disordered Hubbard chains (with potential disorder):    
       - CDW and SDW decay qualitatively different 
       - disorder induced charge – spin separation (at all energy scales)  ? 
  Counting local integrals of motion:  
        - disordered Heisenberg model: full MBL – as many LIOM as local operators 
        - Hubbard model with potential disorder: not full MBL ?  
 


